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Abstract. Uncertainty estimation is a key issue in nuclear crisis situations. Probabilistic methods for taking uncertainties into

account in assessments are often costly in terms of the number of simulations and computation time. This is why emulation

methods, which enable rapid estimation of numerical model outputs, represent a promising solution. The main limitation of

emulation methods is that they can only predict scalar quantities. In a crisis context, decisions are often based on dose maps,

which are mathematically represented by high-dimensional data. In this study, we use the Auto-Associative Model method to5

reduce the dimension of dose results, in order to then predict these reduced data by Kriging. We also compare this prediction

method with others used by the French Nuclear Safety and Radiation Protection Authority (ASNR) to predict the consequences

of a nuclear accident.

1 Introduction

1.1 Context10

In the event of a nuclear accident, numerical simulations of atmospheric dispersion are used to predict the territories potentially

impacted by radioactive releases. The French Authority for Nuclear Safety and Radiation Protection (ASNR) develops and

uses atmospheric dispersion models embedded within its operational crisis platform called C3X to perform these calculations

(Tombette et al., 2014). These simulations are used to infer operational indicators such as the maximum distance from the

source where a dose threshold will be exceeded. The thresholds may be, for instance, regulatory protective action guide levels15

that could trigger protective actions such as population evacuation, sheltering, stable iodine prophylaxis or food restrictions

(de l’intérieur).

Such evaluations are subject to uncertainties due to lack of information on the installation’s status, meteorological forecast

uncertainties, and models’ approximations (Leadbetter, S.J. et al., 2020; LE et al., 2021). Prediction errors can induce two

kinds of wrong decisions: either insufficient population protection zones, where a threshold exceedance occurs but was not20

predicted, or unnecessary actions zones where a threshold exceedance is forecast but does not come true. While the detriment

to the population in the former case is obvious, leading to the use of conservative evaluations designed to avoid this situation

at all costs, limiting evacuation and other restrictions where possible is also desirable, as these actions may have a high and

potentially long-term economical and health cost (Nomura et al., 2013, 2016). A better quantification of uncertainties may
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help refine the hypotheses and potentially reduce the margins of the conservative assumptions, while ensuring a sufficient25

population protection. In the approach applied by the ASNR’s emergency center, the very first response generally relies on

pre-calculated scenarios, whose data are gathered in an "Accident Type Sheet" (ATS). This database relies on calculations

carried out in the preparedness phase for a number of accidental scenarios and for selected weather situations described by a

few parameters (wind direction and speed, atmospheric stability, rain), assumed to be constant in time and homogeneous over

the simulation domain. In a second step, ASNR uses its local scale Gaussian puff atmospheric dispersion model called pX to30

obtain predictions that correspond more closely to the actual accidental and meteorological situation (Korsakissok et al., 2013).

Forecasting tools must be compatible with emergency response time constraints, when the first evaluations should be pro-

vided typically within one hour after the alert. This timing includes not only the computational time required to set up and run

the simulations themselves, but also the time required to gather meteorological forecasts and source term assessment, analyse

the results and communicate them to decision makers. Thus, a numerical model such as the Gaussian puff model pX (), requir-35

ing typically a few minutes to run, can be used for a single, deterministic estimation. However, the computation time required

to account for uncertainties by using hundreds of simulations does not fit with these operational constraints.

1.2 Emulation and dimension reduction

An emulator is a substitution model built to run much faster than the original. It is an approximation of the function linking the

inputs with one of its scalar outputs, often built by interpolation from a sample of simulations.40

In the framework of radiological crisis response, emulators offer multiple attractive applications:

– Enlarge the pre-calculated scenario database by including a variety of input parameters, allowing to evaluate results for

a larger range of meteorological situations than those considered in the ATS;

– Replace the original model in the case of uncertainty estimation (Le et al., 2018) or sensitivity analyses (Girard et al.,

2016), where several hundreds of simulations are needed to perturb the model inputs in order to obtain a large number45

of outputs;

– Thanks to their speed, they allow interactive exploration of the input space, with a graphical interface where it is possible

to vary the model inputs to observe their influence on the output. Such a tool can be used for education and training

purposes, in order to demonstrate the influence of input parameters on the outputs and to help making "reasonably

conservative" evaluations of uncertain parameter values.50

In the field of atmospheric dispersion modelling, emulators have been used to predict spatio-temporal averages quantities,

values at a monitoring point (Le et al., 2018) (Girard et al., 2016), or maximum exceedance distances (Périllat et al., 2020).

The main limitation of emulators currently used for these applications is that they can only predict scalar outputs. Fitting an

emulator for each grid point of a two-dimensional map would be both both difficult to calculate and to implement, because

it would not account for the spatial structure of the data. For these reasons, emulating a spatial map requires a first step of55

dimension reduction.
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The most widely used dimension reduction method is Principal Component Analysis (PCA) (Jolliffe and Cadima, 2016)

(Jolliffe, 2002). It consists in projecting a set of points onto a vector subspace in a least squares optimal way, in order to obtain

the most faithful representation of this set of points in a reduced dimensional subspace. It has been applied in the specific

domain of atmospheric dispersion, sometimes in combination with emulation (Burgin et al., 2017) (Le et al., 2018) (Mallet60

et al., 2018) (Swallow et al., 2017) (Lumet et al., 2025). However, being a linear approximation, PCA fails to encode sets of

map that are too different from one another.

The Auto-Associative Models (AAM) is a extension of PCA that allows to capture nonlinear structures (Girard, 2000): the

dataset is approximated by a differentiable manifold instead of a linear vector space. AAM has been used once to analyse a

set of maps simulated with a dispersion model (Girard et al., 2020). The method allows to parameterize a dataset by only few65

parameters, which can be seen as coordinates.

The present paper present the first combination of AAM with emulation, applied to the prediction of dose maps in case of

an accidental release of radioactive materials in the atmosphere. We present the case study in section 2, the methods in section

3 and the results in section 4. We develop and validate separately the AAM in section 4.1.1, the Kriging in section 4.1.2, and

then the whole emulation method in section 4.1.3. The validation is done on an operational case for the prediction of threshold70

exceedance zones. We validate the performance of this coupling against other prediction methods in 4.

2 Case study

We simulated the result of a primary breach leading to a total core meltdown in one hour of a 1300 MWe Pressurized Water

Reactor. This accidental scenario is one of the pre-calculated scenarios leading to the exceeding of protective action guide

levels over significant distances. We used the pX Gaussian puff dispersion model with the Doury diffusion model in neutral75

atmospheric stability and with a meandering wind coefficient of 3. The meandering wind coefficient is a multiplicative factor

applied to the diffusion model and designed to account for wind direction variations that occur during the time span of the

release and are not taken into account by the meteorological inputs.

We focused here on 2D maps of thyroid inhalation equivalent dose, 24 hours after the beginning of the releases. In France,

stable iodine prophylaxis is related to a dose criteria of 50 mSv to the thyroid. We used a polar mesh with smaller cells close80

the source, where there are strong spatial dose variations. The nodes of the mesh are distributed on 36 angles between 0 and

360° and on 61 different radii from 500 m, increasingly spaced from each other as we move away from the source, until a

distance of 30 km.

Thus, the output data has a dimension of 2196. The case study is stationary: inputs are assumed to be constant in time and

space. This is not generally the case for meteorological variables, but is consistent with the simple situations on which pre-85

calculated sheets are based. We considered six sources of uncertainty as inputs of the model, which are listed in Table 1. Two

of them are related to the meteorological situation: the wind module and rainfall rate ; two uncertain parameters, the source

amplitude (a multiplicative factor applied to the source term computed for the chosen accidental scenario) and release height,
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describe the source term characteristics; and the two last parameters are used to define radionuclide deposition rates, for iodine

and others.90

The choice of uncertain parameters and their ranges of variation is not representative of the full range of possible situations,

but is designed to cover the most frequent use cases. For instance, the source term computed for the accidental scenario

comprises 224 radionuclides, each of them being associated to a release rate as a function of time. It was computed with

conservative assumptions as to the quantity of radioactive materials emitted in the atmosphere; therefore, the multiplicative

factor applied to these quantities is supposed to vary between 0 and 100%, as the evaluation of the installation status at the time95

of the accident is more likely to lead to a decrease in the source term. In addition, uncertainties in parameters such as the ratio

between the release rate of different radionuclides, or model parameters such as deposition velocity and scavenging coefficient,

are not taken into account in this study, as they are of lesser importance in a first approach (Girard et al., 2014).

Table 1. Input parameters and ranges of variation for the construction of emulators.

70 Input variable Range of variation Units

Wind module [0, 10] m.s−1

Rain intensity [0, 10] mm.h−1

Release height [0, 100] m

Source term amplitude [10, 100] %

Deposition velocity of iodine [1× 10−5, 1× 10−2] m.s−1

Deposition velocity of other elements [5× 10−4, 5× 10−3] m.s−1

3 Emulation method

3.1 Auto-Associative Models100

"Reducing the dimension" of an ensemble embedded in a high dimensional vector space consists in building an associated

ensemble, with a lower dimensional coordinate system. A rough definition of topological dimension would be "the minimum

number of variables needed to represent a set" (Fukunaga and Olsen, 1971). More rigorously, we must choose the nature of the

associated sets in order to have a precise definition of "coordinate system", for example the one recalled by (Milnor, 1997) for

differentiable manifold.105

Given a set G⊂ Rm, with a large m, we try to construct the approximate set A⊂ Rm in bijection with the vector space

C ⊂ Rl, with l small (see figure 1).
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Figure 1. Principle of dimension reduction.

The Auto-Associative Models (Girard and Iovleff, 2008) is a nonlinear method of dimension reduction. The term "linear"

here means that the approximating space A would be a sub-vector space and χ◦ψ an orthogonal projection. In contrast, in the

"nonlinear" case, the approximating space A is a differentiable manifold and χ◦ψ a composition of orthogonal projections by110

a nonlinear χ function.

3.2 Kriging

Kriging is a spatial interpolation method and the core of geostatistics. It was originally designed for optimizing gold mining

(Chilès and Delfiner, 1999) by inferring from a few boreholes the spatial distribution of gold grades over the whole mining

field. Kriging becomes an emulation method by replacing the spatial coordinates by the model inputs, and gold grade by the115

scalar model output.

The Kriging emulator predicts the value of the model output as a linear combination of a sample of pre-computed values,

the learning sample. The weights of the linear combination depend only on the relative positions of the target and learning

points in the input space. More precisely, they are uniquely determined as the solution of the minimization of the variance of

the prediction error.120

This variance is defined by assuming that the response surface, namely the surface spanned by the output when the inputs

vary, is a realization of a square integrable random process. The random process is assumed to be second order stationary,

which means that its expectation is constant, and the covariance between values at two points depends solely on their (vector)

distance.

For a process with null expectation, the weights w1, . . . ,wN are the solution of the following system125

∀1≤ i≤N,
N∑

j=1

wj K(xi,xj) +λ=K(x,xi), (1)

N∑

j=1

wj = 1, (2)

where K(·, ·) is the covariance kernel, x1, . . . ,xN are the training points in the input space, λ a Lagrange multiplier and x

the target point in the input space. The centered prediction at x is then given by f̂(x) =
∑N

i=1wjf(xi), where f(xi) are the

pre-computed values at the training points. The (usually non null) expectation is also estimated by a linear combination of the130

pre-computed values and added to the prediction. The weights for the expectation estimator verify a similar equation system

as (1) with a null second member in the first line.
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We used the R package DiceKriging (Roustant et al., 2012) which provides a choice of second order stationary covariance

kernels.We used a tensor product of identical kernels, one for each input variable. We fitted the parameters of these kernels

(a characteristic length of spatial dependency for each input variable) by maximum likelihood estimation using the BFGS135

optimization algorithm.

3.3 Putting it into practice

We performed 2548 simulations uniformly sampling the 5 dimensional input space of the release height, the wind module, the

rain intensity and the two deposition velocity (their range of variation is given in table 1). The output dose being linear with the

amplitude of the source term, we completed the simulation sample using two random amplitudes for each input vector, thus140

covering the whole 6 dimension input space with a total of 5096 points. 4096 of them are used to train the AAM, while the

other 1000 were used to fit the model.

Because the dose values have important exponential variations with distance, we used the method on the logarithm of the

dose. The AAM reduced the dimension of the results to nine coordinates, whereas the initial data dimension was 2196, corre-

sponding to a grid mesh of size 36× 61. Using fewer than nine coordinates resulted in larger errors, while higher-dimensional145

approximations increased computation times with only moderate improvements in results. Since the final goal of this param-

eterization is to focus on the zones where a dose threshold th is exceeded, we also truncated the logarithm of the doses: any

values below log(th)/2 were set to log(th)/2. Thus, small dose variations do not disturb the parameterization by AAM.

Kriging is then used to create emulators. Once these emulators built, the emulator combined with dimension reduction can

then be used to predict an output map for any new input vector (see figure 2). The AAM can finally associate to these 9 scalars150

a two dimensional map of inhalation dose.

Kriging
 AAM


Inputs of

the model


9 coordinates
 Dose map


Figure 2. Dose map prediction process using emulation coupled with AAM.

4 Results

4.1 Validation

An additional simulation sample was built to test the reliability of the emulator. We drew M = 1000 random new points in

our 6-dimensional input space and then run the computational model M times with input parameters corresponding to these155

draws. We obtained M output results that were compared with the maps reconstructed after dimension reduction with AAM

(section 4.1.1) and with emulators predictions (section 4.1.2, then with the combination of the two methods (section 4.1.3).
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4.1.1 Validation of the dimension reduction by AAM

We assessed the validity of the dimension reduction step by comparing the maps two by two for our test sample, as in figure

3, and by calculating the Figure of Merit in Space (FMS) of the dose criteria exceedance isolines for each of these maps. This

score is calculated by dividing the area of the intersection of the two surfaces A and B by the area of the union of the two:

FMS =
A∩B
A∪B

The FMS of two very similar surfaces approaches 1, while when two isolines have little surface in common it approaches 0.
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Figure 3. Inhalation dose map and 50 mSv guide-level exceedance isolines for a model output (left) and for the approximation of this output

by AAM (right).

Figure 4 shows that the isolines exceeding 50 mSv are preserved with the AAM approximation. In 75.5% of the case, the160

FMS is above 0.8. In 11.7% of the case, the FMS cannot be calculated because there is no threshold exceedance. It means that

the predicted isolines are very close to the one calculated by the model.
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Figure 4. Histogram of the FMS that compares the threshold exceedance zones for the model outputs with AAM approximations.

4.1.2 Validation of the interpolation by Kriging

Figure 5 shows how well each scalar is predicted. The closer the set of points is to the line y = x, the better the prediction.

We quantified the prediction error with the Standardized Mean Squared Error (SMSE). For a set of N observed points

(xi)i∈[1,N ] and a set (x̂i)i∈[1,N ] of estimated points, the SMSE is defined as follows:

SMSE =
∑N

i=1 (xi− x̂i)
2

∑N
i=1 (xi− x̄)2

,

where x̄ is the mean of (xi)i∈[1,N ].165

Table 2. SMSE Calculated for Each Score

SMSE Value

Score 01 9.939e-04

Score 02 6.482e-03

Score 03 1.466e-02

Score 04 7.065e-02

Score 05 1.228e-01

Score 06 6.076e-02

Score 07 1.604e-01

Score 08 5.114e-01

Score 09 1.001e+00

We can note in table 2 that the first three scalars are the best reconstructed. The last 2 scalars are the least well reconstructed.
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Figure 5. Comparison of the prediction of the emulator (in y-axis) with the target obtained by simulation (in x-axis). Each graph represent

one coordinate of the AAM.

These results show that most scalars are well reconstructed by Kriging. The last scalars, even very poorly predicted, slightly

improve the quality of the maps predicted by the method. This is why we decided to keep them.

4.1.3 Validation of the emulator that combines the two methods

With the AAM, this prediction of the 9 scalars can be transformed into a 2D dose map, which can be used to determine a170

threshold exceedance isoline. The succession of the two methods thus allows to convert the model inputs into a decision aiding

map, defined by an isoline, to estimate whether or not a guide-level might be exceeded.

Comparisons between simulations and associated emulator predictions can be classified into four cases:

– Case 1: Dose maps that are well reconstructed by the method, as shown in figure 6 (a) and (b). The shape of the isoline

is preserved, and its size is similar to that given by the simulation, resulting in a well-estimated maximum distance.175
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Figure 6. Examples of inhalation dose maps for simulated results by the original physical model (left) and emulator predicted results (right).
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– Case 2: Dose maps that are well reconstructed, but the isolines can differ slightly in scale from what is expected, as

illustrated in figure 6 (c) and (d).

– Case 3: Dose maps that are less well reconstructed, where the general shape of the isoline is not accurately reproduced.

This typically occurs under low wind conditions, as shown in figure 6 (e) and (f).

– Case 4: Dose maps that approach the threshold value with little or no exceedance, but the predicted and simulated180

isolines may differ significantly. Figure 6 (g) and (h) illustrates this: although the two dose maps appear similar, a slight

difference in intensity can cause a noticeable discrepancy in the exceedance isoline prediction.
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Figure 7. Histogram of the FMS that compares the threshold exceedance zones for the model outputs with the emulator outputs. 76.3 % of

the FMS are between 0.8 and 1, which implies that the predicted results are very often similar to those obtained by simulation.

We evaluated the adequacy of the simulated and predicted surfaces by calculating the FMS of our test sample simulations.

Figure 7 represents the histograms of the FMS. We can notice a slight degradation compared to Figure 4. However 70.9 % of

the FMS are between 0.8 and 1, which implies that the predicted isolines are very often similar to those obtained by simulation185

(Case n°1 and n°2 described earlier). Also, 11.5 % of the FMS cannot be calculated, because both of the simulation and

emulator detect no threshold exceedance. Those cases correspond also to a good prediction of the emulator. We note that 2.8

% of the FMS are equal to zero, which correspond to the problem of the non-reached threshold mentioned previously (Case

n°3). The last 14.8 % intermediate FMS correspond to badly reconstructed isolines (Case n°4), for instance when the wind

module is low, which does not necessarily mean that the surface error is large, because the FMS is a relative score. Excluding190

the cases where no threshold is exceeded, badly reconstructed areas amount to 17.6 %, which means that more than 80 % of

the threshold exceedance areas are correctly forecast.
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4.2 Comparison to other prediction methods

We benchmarked our new prediction method against two state of the art procedures:

– At the start of a crisis, a first estimate is derived from the ATS, yielding orders of magnitude and first results for distance195

and angular aperture of exceedance. Then simulations are performed with the pX model in order to predict a guide-level

exceedance zone and estimate a maximum distance of threshold exceedance. An angular aperture is also estimated from

pre-computed tables depending on wind, atmospheric stability, and meandering wind factor. This simulated maximum

distance, associated with this angular aperture obtained without emulation, allows to deduce a portion of circle which

corresponds to the zone for which decisions are recommended.200

– In a previous study (Périllat et al., 2020), an emulator was created to directly predict, without using AAM, the maximum

distance of the threshold exceedance given by the model, as well as the angular aperture of this zone. Kriging was used

to estimate those two geometrical parameters from the original model pX.

These two methods will be referred to as the ’ATS estimator’ and the ’Emulator of geometrical parameters’ in the remainder

of this paper.205
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Figure 8. Guide-level exceedance zone, for one simulation of the test sample, obtained by the different estimation methods: the ATS estimator

(a), the emulator of geometrical parameters (b), prediction by our emulator which coupled Kriging to AAM (c), prediction by the same

emulator with a lower threshold (d). The zone of guide-level exceedance given by the Gaussian puff model pX is superimposed to each graph

(darker color).

Figure 8 shows the comparison between the AAM-kriging emulator described in section 3 (Fig. 8(c)) and the two usual

approaches (Fig. 8(a) and (b)). In addition, we tested a fourth method: the AAM-kriging emulator applied to a lower threshold

exceedance than the actual guide-level value, to take a margin on the results obtained by the emulator (Fig. 8(d)). To achieve

that, instead of creating an isoline at log(th) on our logarithmic dose, we created an isoline at log(th)/1.1.

We compared the isolines of these different prediction methods to the one given by the Gaussian puff model for the 1000210

simulations of our test sample. Four kinds of areas may be defined:

– True-Positives: areas where both the predictor and the model forecast a threshold exceedance.

– True-Negatives: areas where the predictor and the model do not forecast a threshold exceedance.
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Figure 9. Cumulative distribution function of the probability to obtain surface of false-negative and false-positive (in km2) for the different

predictors. These functions where estimated with a sample test of 1000 simulations. The closer the curves are to the value 1, the lower the

probability of obtaining false-negative (top) or false-positive (bottom).

– False-Positives: areas where the predictor predicts threshold exceedance, while the model forecasts the opposite.

– False-Negatives: areas where the predictor does not predict a threshold exceedance, while the model forecasts the oppo-215

site.

These surfaces allow us to evaluate the performance of each method. Each output pair (model, predictor) is characterized by

a certain amount of true-positive, true-negative, false-positive and false-negative areas.

False-positive and false-negative are two kinds of errors that we seek to minimize, but the latter is the most critical as it

would imply the underestimation of the population which could be exposed beyond the dose criteria.220

Figure 9 and Table 3 show that the ATS estimator, used as a very first response, is the one that gives the most false-

positives (10.665 km2), with an extremely low number of false-negatives (0,030 km2). This method was indeed designed to be

conservative.

The emulator of geometrical parameters of the previous study have the advantage of decreasing the false-positives (3,846

km2), but they increase the false-negative area (0,056 km2), which are to be avoided as much as possible, as they are the most225

critical errors when considering population protection issues.
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Estimator
Total surface (km2)

False-Positive False-Negative

ATS estimator 10.665 0,030

Emulator of geometrical parameters 3,846 0,056

AAM-kriging emulation 0,221 0,227

AAM-kriging emulation with margin 1,747 0,015
Table 3. Total surface in km2 of false-positive and false-negative for the 1000 simulations of the sample text, for each method used to predict

areas of dose threshold exceedance. The surface of the studied domain is 94,25 km2.

The AAM-kriging emulation method gives few false-positives (0,221 km2), and false-negatives (0,227 km2), and in a similar

quantity. Indeed, this method aims to get as close as possible to the isoline predicted by the original model. It therefore takes

no margin and obtains small errors in either over- or under-estimation, demonstrating a fairly accurate prediction ability. The

last method, designed by adding a margin thanks to a slightly lower threshold, slightly increases the false-positives (1,747230

km2), but drastically reduces the false-negatives (0,015 km2). With this method, the number of false-negatives is as low as the

quantity obtained by the ATS estimator, but with a number of false-positives more than eight times lower.

5 Application

AAM coupled with kriging allows the creation of emulators that can reproduce the model output in approximately 0.005

seconds, whereas the original dispersion model, pX, takes about 1 minute. This increased speed of calculation enables the use235

of the emulator in various applications where the use of the original model is not feasible.

This emulator can generate sample of thousands results in seconds, and then allow us to take the uncertainty into account

in our study, by using probabilistic approaches, as it can be seen in figure 10 which shows an estimation of probability of

threshold exceedance. We developed a graphical interface (see figure 11) enabling emergency responders to obtain the dose

map immediately by modifying the input parameters. It can also be used as a training purpose, because it allows the user to see240

how the dose map evolves.
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Figure 10. Example of a map which represent the estimation by the emulation with AAM of the probability of threshold exceedance after a

nuclear accident.

Figure 11. Example of a graphical interface created during the projet that enables users to directly observe how each input impacts the dose

map.

6 Conclusion

AAM coupled with Kriging allow to create emulators which can reproduce the model output with a drastic reduction in

computational time. The guide-level dose exceedance isoline obtained with the emulator is very close to the one obtained with

the original model: the FMS between the two is under 0.8 in less than 17.6 % of our sample test. For an operational use, we245
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recommend to take a margin by reducing the threshold exceedance of the dose. It will slightly increase the false-positives, but

significantly decrease the false-negatives.

We obtained very similar results with different guide-levels and with the Doury dispersion model in weak diffusion.

This method of creating emulator is currently in an operationalization phase, to reproduce it on several other source terms,

to create a catalog of emulator which cover scenarios among the ATS of ASNR.250

This is the first time the AAM are used on a real and operational application. This study advances the state of the art in

atmospheric dispersion by creating a new way to parameterize and predict quantity maps, which can be used in an operational

context with probabilistic approaches where hundreds of results must be obtained.

The main limitation of our approach is that in some rare cases, mainly when the wind module is low, the emulator’s ability to

reconstruct the model’s predicted map is lower. However, these cases are also badly forecast by the physical dispersion model255

itself, and the error of the emulator would not necessarily exceed that of the pX model, were they compared to environmental

observations. We think that these results would be improved by modifying the AAM construction method, which at some point

in its process uses a Euclidean distance to compare maps. However, some mathematical distances, such as the Wasserstein

distance (Kolouri et al., 2017) for example, could be more suitable for comparing 2D dose maps within them. The AAM

method could then benefit from a modification to use other distances in its algorithm to go one step further in improving the260

application cases.
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